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LETTER TO THE EDITOR 

Phase transition in a random Ising model on a Cayley tree 

T Horiguchi and T Morita 
Department of Applied Science, Faculty of Engineering, Tohoku University, Sendai 980, 
Japan 

Received 14 November 1979 

Abstract. Temperatures where the 2nth expansion coefficient of the average free energy 
with respect to the external field fails to have a definite value are obtained for a random king 
model on a Cayley tree. The assumptioiis made for the random king model are that the 
exchange integral is a random variable, its probability distribution is independent of the pair 
of sites and the average value of the absolute value of the exchange integral is finite. The 
critical exponents K defined by Muller-Hartmann and Zittartz are obtained. The phase 
transition is of the continuous order. 

The regular Ising model on a Cayley tree has been shown to exhibit an unusual phase 
transition by many authors (Eggarter 1974, Matsuda 1974, Muller-Hartmann and 
Zittartz 1974, von Heimburg and Thomas 1974, Morita and Horiguchi 1975, Falk 
1975). In particular, Muller-Hartmann and Zittartz (1974, 1975) revealed that the 
phase transition is of the continuous order. Attention has been extended to the random 
Ising model. Heinrichs (1979) has investigated a dilute Ising model in the vicinity of the 
percolation threshold at low temperatures. GonGalves da Silva (1979) has studied the 
random Ising model with an equal number of ferro- and antiferromagnetic bonds. 

In this Letter, we report our results obtained recently for a random Ising model on a 
Cayley tree in which the probability distribution of the random exchange integral is 
assumed to be independent of the pair of sites. 

Consider the Cayley tree built up of N + 1 generations. The zeroth generation has 
only one site, which is denoted by 0 or ro and has B nearest-neighbour sites belonging to 
the first generation. Each site of the n th generation, except n = 0 and n = N, has B + 1 
nearest-neighbour sites of which B belong to the ( n  + 1)th generation and one to the 
( n  - 1)th generation. Each site of the Nth  generation has only one nearest-neighbour 
site belonging to the ( N  - 1)th generation. A site of the nth generation ( n  # 0) is 
labelled by i l i z .  . . in, where il are integers between 1 and B, or briefly by r,,. The total 
number of sites N ,  is given by 

Ns=(BN+'-1)/(B-l). (1) 

Our system is described by the Hamiltonian 
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where gra is the Ising spin variable and Krn = pJrn, C = ph, and p = l / k B T  as usual. h is 
an applied external field and J,, is a random exchange integral whose probability density 
or mass P(Jrn) is assumed not to depend on each pair of sites. 

Under the condition that the average of the absolute value of the random variable J,, 
is finite, we are able to show that the average free energy per site f ( h )  in the 
thermodynamic limit is expressed by 

(3) 
B-1 O0 

- p f ( h )  = 2 B-" [ [I ln[2cosh(2y) + 2cosh(2K)]P(J) dJ}g".-"(yj dy, 
" = l  

where K = pJ, 

I B 
g'")(y) = [ . . . [ [ . . . [ S[ y - C - tanh-'(tanh yi tanh Ki) 

i = l  

for v = 1 , 2 , .  . . , and 

g'"(y) = S(y - C). 

The right-hand side of (3) converges uniformly. An expression for the average 
magnetisation per site in the thermodynamic limit is also obtained and the uniformity of 
convergence of the obtained expression gives the conclusion that there is no spon- 
taneous magnetisation except at T = 0 in our system. 

Consider the free energy, which is the one obtained by subtracting -pf(O) from (3): 

If - p A f ( h )  has the first 2n derivatives at h = 0, then we have 

- p A f ( h ) =  fiC"+o(C2"), (7) 
/ = 1  

where o(C'") expresses a term of order less than C2" (e.g. Hardy 1952). Here we have 
1-1 n + l  f i = ,  B-1 1 O3 B-" 1 1 =( [ ( l - tanhZK)PP(J)dJ)  

v = l  n = O p = l  p 

The summation on the right-hand side of (9) is taken over the sets {mi} of non-negative 
is integers mi, which satisfy the conditions Zy& mj = m and Z ~ O  jmj = 1. y u  

determined from the recursion formula 

- ( 2 + 2 n , 2 1 )  
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x (tanh K)pi+2izP(J)  dJ, (11) 

1, yldm,m+2r) = O  (1 # 0); (12) y"Lmsm) = 

I 
T, are defined by 22i(22i - 1)Bi/2j where Bi are the Bernoulli numbers. The second 
summation on the right-hand side of (10) is taken over the sets (pi, li} of positive integers 
pl,  p 2 ,  . . . , p, ,  11, 1 2 ,  . . . , I,, which satisfy the conditions XY=l lip, = k and pi+l >pi, and 
the third summation is taken over the sets {oi} of non-negative integers ai, satisfying the 
condition w i  = 1. 

We now find the highest temperature kBT(2n)(  = l/p'2"') at whichf, fails to have a 
definite value. Taking into account the inequality 

I 

11 tanh'KP(J)dJl s I tanh'lKIP(J)dJ G t anh2KP(J)dJ  I 
for 1 = 3,4, . . . , we conclude that the sum of the most dangerous terms in f ,  is 

f ,  - cy, " = I  f E'.[ B I tanh KP(J)dJ]  2 n v  + p n  v = l  f B-'[ B I tanh'KP(J)dJ] (14) 

Then we have two possible temperatures for T ( 2 n )  which are obtained from the 
following equations, respectively: 

If we denote the positive solution p of tanh2KP(J)dJ  = x for 0 6 x s 1 by p2(x) ,  
then the solution of (16), pi2"), is given by 

p p  = p2(B(1/n)-1 ). (17) 
Here we note that we always have a non-zero solution kBTi2") ( =  1/p$2fl)) except for 
n = 1. If we denote the smallest positive solution @ of tanh KP(J )dJ I  = x for 
Osx G 1 by pl(x), the solution of (15), p':"', is given by 

1. (18) = p1(B'1/2"'-' 

We note that we do not always have the solution 
we put pi2"' = CO. Then we have 

When there is no solution pi2"), 

1. (19) ~ ( 2 , )  = min(pi2n), ~ i 2 n )  

Noticing that each of pl(x) and p 2 ( x )  is a monotonic function of x, we have 

T'2' s 7 4 4 '  < , I . s p a ) ,  (20) 
where T@') is the highest temperature which satisfies either BIj tanh KP(J )dJ I  = 1 or 
B tanh' K P ( J ) d J  = 1. In a separate paper, we give an expression for the '2nth order 
susceptibility' f, at high temperatures in the thermodynamic limit. The expression 
involves terms which diverge at the temperature Ti2,) given by (19). 
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For the system with ferro- and antiferromagnetic bonds of magnitude IJl> 0, i.e. 
when 

we show T ( 2 n )  given by (19) in figure 1 for B = 2. 
Finally, by using the cut-off argument by Muller-Hartmann and Zittartz, we have 

the critical exponents K ( T )  for the leading non-analytic behaviour of the form lhJK(T)  of 
the free energy (6) as follows: 

p ( J r n ) = @ ( J r n  - I J I ) + ( ~ - P ) ~ ( J ~ "  +l.7/), (21) 

K ( " ( T )  =InB/ln(Bl\  tanhKP(J)dJl) ,  (22) 

K(2 ' (  T )  = 2 In B/ln ( 1  B tanh2 KP(J)dJ) .  (23) 

Thus the phase transition is of the continuous order K .  

In concluding this Letter, we remark that the results obtained by specialising our 
results to the model with (21) are different from the ones by Gongalves da Silva (1979) 
except at p = 3. He studied the ferromagnetic Ising model with random applied field, 
which is not equivalent to the random Ising model with ferro- and antiferromagnetic 
bonds except at p = 3. The details of the present calculations and further discussions will 
be presented elsewhere. 

P 

Figure 1. kgT(2n'/JJI versus concentration p of ferromagnetic bonds for B = 2. 
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